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Hairpin Helices Formed by d(T-A) Oligomers and 
the Theory of DNA Melting 

A few years ago, Elson, Scheffler, and I began a study 
of loops in hairpin helices formed by d(T-A) oligomers 
of defined chain lengths. The properties of loops in 
nucleic acid helices are important for several reasons. 
They are found in all transfer RNAs, and the loops as 
well as the base pairs must be taken into account in 
estimating the relative stabilities of different cloverleaf 
models for tRNA structure. Loops also play an impor- 
tant role in determining the melting behavior of macro- 
molecular DNAs. 

A basic aim of our work, one which provides a focus 
for this Account, was to test some fundamental assump- 
tions in the theory of DNA “melting,” a term used by 
DNA chemists for the transition from a helix to a non- 
base-paired chain. Oligomers are ideal materials for 
such a study because helix stability depends strongly on 
chain length in this size range, and a detailed study of 
this size dependence can be used to  test the theory. 

Compared to other biological macromolecules, dou- 
ble-helical DNA has a very simple structure, so that 
one can hope to predict the position of equilibrium for 
any specified reaction, such as the opening of a particu- 
lar sequence in a long DNA helix, by measuring only a 
few basic equilibrium constants as a function of tem- 
perature and monovalent counterion concentration 
( A I ) .  A theoretical framework for doing this has been 
worked out, with minor variations, by several authors. 
I n  particular, the theory of Zimm2 has been widely 
used. 

I n  its present form, the theory of DNA melting con- 
tains the following elements. (1) There are two 

t Supported by research grants from the National Science Founda- 
tion (GB 8016) and the National Institutes of Health (AM 04763). 

(1) Abbreviations: DNA, deoxyribonucleic acid; RNA, ribo- 
nucleic acid; d, DNA chain; r, RNA chain; tRNA, transfer RNA; 
A, G, C, T, U, adenine, guanine, cytosine, thymine, and uracil, 
respectively; (T-A), chain with a repeating T-A-T-A . . . sequence; 
d(T-A).v, chain with the T-A sequence repeated N times and with 
T a t  the S’-phosphate end of the chain; poly[d(A-T)], polymeric 
chain with a repeating A-T sequence; T .A,  the base pair of T 
hydrogen bonded to A. See W. E. Cohn, Eur. J. Bwchem., 15, 203 
(1970). 

For a recent 
review of the theory of DNA melting, see Y. S. Lazurkin, M. D, 
Frank-Kamenetskii, and E. N. Trifonov, Bwpolymers, 9, 1263 
(1970). 

(2) B. H. Zimm, J. Chem. Phys., 33, 1349 (1960). 

physical types of base pairs: the isolated base pair, 
which nucleates a new helical segment, and the stacked 
base pair, which is added a t  the end of an existing 
helix and gains stability via a stacking interaction with 
the adjacent base pair. (As customarily defined, there 
are n - 1 stacking interactions in a helical stack of n 
base pairs.) (2) There are two chemical types of base 
pairs, A . T  and G.C,  which differ in stability. (3) 
There are three types of loops of unpaired bases. I n  
natural DNAs a symmetric two-chain loop is formed 
when a new helical segment is nucleated in a partly 
helical, partly unpaired, molecule (see Figure 1). Dou- 
ble-stranded synthetic DNAs with repeating sequences 
can form asymmetric two-chain loops, with different 
numbers of unpaired bases on opposite strands. Fi- 
nally there are hairpin Zoops, formed by the looping back 
of one chain on itself, as in tRNA molecules and in 
d (T-A) hairpins. 

I n  our work with d(T-A) oligomers, we bypass the 
problem of two chemical types of base pairs and, since 
every T . A  base pair in the interior of a helix has the 
same nearest neighbors, we suppose that the stacking 
interaction is the same for each stacked base pair. 
Then we are free to focus on three basic questions. 
(1) How stable is an isolated T . A  base pair in water, 
when it closes the minimum-size hairpin loop? (2) 
Does the “stability constant”2 s for a stacked base 
pair depend on helix length and on the size of an oligo- 
mer? (3) How does the equilibrium constant for 
hairpin loop formation vary with loop size? For suf- 
ficiently large loops, the difference in geometries be- 
tween hairpin and two-chain loops should become unim- 
portant, so that a study of hairpin loops should also be 
useful in understanding the properties of two-chain 
loops. 

Nucleation of the DNA helix has a low probability 
compared t o  helix propagation, for two reasons. (1) 
The isolated base pair lacks a stacking interaction. 
Studies of base stacking in systems where base pairing 
does not occur (e.g., in dinucleoside  phosphate^)^ show 
that base stacking in water is driven by a favorable 
standard enthalpy ( A H ’ )  and is opposed by the stan- 
dard entropy (AS’). Probably this is true also of the 

(3) R. C. Davis and I. Tinoco, Jr., ib id . ,  6, 223 (1968). 

265 



266 ROBERT L. BALDWIN VOl. 4 

‘ w,‘ / 

S=a’(Z) To 

Figure 1. Diagrams of helix nucleation via the formation of an  
isolated base pair: (a )  by  joining the two complementary DiYA 
chains-the bimolecular equilibrium constant is K and the helix 
propagation constant (or stability constant) is s; (b) by  closing 
a two-chain loop in a partly helical DNA molecule-the loop has 
x internucleotide links and x - 2 unpaired bases. I n  (c) the 
formation of a stacked base pair is divided into two processes for 
the purpose of introducing the stacking interaction constant 70: 

first, an isolated base pair is formed with equilibrium constant 
~ ( 2 ) ;  second, the  isolated base pair is added on t o  the helix 
with equilibrium constant 70. (For a hairpin loop (see Figure 
2) with x - 1 unpaired bases there are z internucleotide links 
counted as phosphate residues; x - 1 are backbone links with 
six rotatable bonds per link and one is a base-pair link with 11 
rotatable bonds, treating the base pair as rigid unit.) 

stacking interaction between base pairs in the DKA 
helix. Since the values of AHo for isolated and stacked 
base pairs are quite different, the equilibrium constants 
for isolated and stacked base pairs will have quite dif- 
ferent dependences on temperature. (2) The DNA 
helix may be nucleated in a variety of ways (by joining 
two separate chains or by closing loops of different 
types), all of which have unfavorable ASO’s. To 
form a base pair the two bases must be brought within 
a critical volume element 6w, whose radius is of the order 
of the H-bond length.* 

The probability of closing a loop consequently de- 
creases with loop size. This is expressed quantita- 
tively by the loop-weighting function (or “lwf”) which 
gives the time-average effective concentration of one 
base in the vicinity of its partner-to-be. By use of the 
lwf p(z), the equilibrium constant for helix nucleation 
via loop closure, y ( ~ ) , ~  may be correlated with the nu- 
cleation constant K for joining two chains (see Figure 
1).6 The units of K and p( s )  are reciprocal; if the 

(4) H. Jacobson and W. H. Stockmayer, J .  Chem. Phys., 18, 1600 
(1950). Compare also the correlation of “Hershey circle” formation 
with the joining of half-molecules of X DNA: J. C. Wang and N. 
Davidson, J .  Mol.  Biol., 15, 111 (1966); 19, 469 (1966). 

(5) In  the case of the a helix, the equilibrium constant for nuclea- 
tion is written as US, not y;  u is then the ratio of the equilibrium 
constants for nucleation and for propagation. Since AH’ for the 
first H bond formed (between residues 1 and 5 of a new helical seg- 
ment) is probably the same as for successive H bonds (between 
residues 2-6, 3-7, etc.), u is purely entropic and may be assumed t o  be 
independent of temperature. A similar notation has generally been 
used for nucleation of the DNA helix, L e . ,  writing a(z)s rather than 
y(z). Including s as one factor 
of the nucleation constant implies a similarity in the thermodynamic 
properties of isolated and stacked base pairs that does not exist. 
Also, A H o  for y(z) is probably close t o  0 while s is strongly tempera- 
ture dependent; if y(z) is independent of temperature, then u ( z )  
has the inverse temperature dependence of s. 

In  our view, this proves awkward. 

r(z) = K P @ )  (1) 
effective concentration p(z) has units of molecules/ 
i3, then the bimolecular constant K has units of 
ia/molecule. The term “effective” concentration is 
used to describe p ( s )  because the probability of base- 
pair formation depends both on the concentration of 
the complementary base and on the mutual orientation 
of the bases, which may be correlated with the concen- 
tration if the loop is small. Equation 1 is analogous to 
the correlation by Jacobson and Stockmayer4 of cycliza- 
tion with the synthesis of linear polymers in condensa- 
tion polymerization. 

Helix nucleation and propagation have been studied 
for rA. rA oligomeric helices, formed at acid pH’s, by 
Applequist and Damle’ and recently by Eigen and 
PSrschke.8 This helix, which is formed when rA 
chains are protonated, has tivo parallel strands and the 
bonding between strands includes H bonding between 
adenine and p h o ~ p h a t e . ~  Because its electrostatic 
properties are quite different from those of the DNA 
helix, and also because the structure and bonding be- 
tween strands are unlike those of DNA, the rA.rA acid 
helix is not a good model for DSA.  However, these 
studies have been very helpful in understanding helix 
formation by oligonucleotides. 

Some Properties of Poly[d(A-T)] 
The alternating DNA copolymer poly [d(A-T)] was 

first discovered by accident,1° in a control for an experi- 
ment studying DNA synthesis in vitro by the E.  coli 
DNA polymerase. “Nearest-neighbor frequency” ex- 
periments showed that the base sequence of poly[d- 
(A-T) ] is entirely the alternating, self-complementary 
sequence A-T-A-T-. . . within the error of measurement 
(0.5Oj,). The mechanism of its d e  novo synthesis re- 
mains unknown, but a clue has been provided by the 
finding that short T-A-T-A. . . oligomers will serve as 
templates for the enzymatic synthesis of the polymer.“ 
The helical structure of poly[d(A-T)] is like that of 
natural DNAs (the lithium salt gives the B form 
helix), although a strange form (the “D” form) has 
been found in fibers of the ammonium and sodium 
salts. l2 

Several physical experiments indicate that poly [d- 
(A-T) ] forms hairpin helix branches13-15 before and 
during melting. The ability to branch endows poly- 

(6) I. E. Scheffler, E .  L. Elson, and R .  L. Baldwin, J .  M o l .  B id . ,  
48, 145 (1970). 

(7) J. Applequist and V. Damle, J. Amer. Chhem. Soc., 87, 1450 
(1965). 

(8) hl. Eigen and D. Porschke, J .  Mol .  Biol., 53, 123 (1970). 
(9) A. Rich, D. R. Davies, F. H. C. Crick, and J. D.  Watson, 

(10) H. K .  Schachman, J. Adler, C. M. Radding, I. R. Lehman, 

(11) A. Kornberg, L. L. Bertsch, J. F. Jackson, and H. G. Khorana, 

(12) D. R. Davies and R. L. Baldwin, J .  Mol .  Biol., 6, 251 (1963). 
(13) R. B. Inman and R. L. Baldwin, ibid. ,  5, 172 (1962); R. B. 

Inman and R.  L. Baldwin, ibid. ,  5, 185 (1962). 
(14) H. Ch. Spats and R. L. Baldwln, ibid. ,  11, 213 (1965). 
(15) For a review, see R. L. Baldwin in “Molecular Associations 

in Biology,” B. Pullman, Ed., Academic Press, New York, N. Y . ,  
1968, p 145. 

i b i d . ,  3, 71 (1961). 

and A. Kornberg, J. Bid.  Chem., 235, 3242 (1960). 

PTOC. Nat. Acad. Sci. U .  S., 51, 315 (1964). 
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[d(A-T) ] with an unusual conformational mobility, 
that  may be detected by viscosity measurementsIa a t  
temperatures even 30-40” below the T,  (the tempera- 
ture midpoint of the melting transition). This confor- 
mational mobility probably explains many of the un- 
usual responses of poly[d(A-T)] to enzymes acting on 
nucleic acids, such as E. coli exonuclease I.16 I ts  mo- 
bility appears important for the interferon-inducing 
ability of poly [d(A-T) J and of its RNA analog poly- 
[r(A-U)]; the effectiveness of poly [r(A-U)] for inter- 
feron induction is in fact increased 106-fold by pre- 
incubation for 2 hr a t  37O.l’ 

Preparation and Characterization 
of d(T-A), Oligomers 

Our first problem was, of course, to prepare the oligo- 
mers and to  fractionate them in a size range where 
complete separation has been difficult to achieve (chain 
lengths of 10-50 residues). Cleavage of poly [d(A-T)] 
with an endonuclease from bovine pancrease (pancre- 
atic DNase) revealed a fortunate specificity of this en- 
zyme for the ApT bond in poly[d(A-T)].ls The result- 
ing oligomers have equal numbers of A’s and T’s, with T 
a t  the 5‘-phosphate end of the chain and A at  the 3‘- 
hydroxyl end, and therefore are described by the generic 
formula d(T-A),. This fourfold reduction in the 
number of possible oligomers greatly simplified the 
problem of fractionation. Electrophoresis in concen- 
trated acrylamide gels was found capable of resolving 
some 20 d(T-A), oligomer bands,lg both on an analyti- 
cal and on a preparative scale, with the size range of 
optimum resolution depending on the acrylamide con- 
centration. 

Oligomers in the size range 5 _< N _< 25 were pre- 
pared and studied.’* Their molecular weights were 
determined by equilibrium centrifugation at  an alkaline 
p H  sufficient to  melt the helix by titrating the thymid- 
ylate residues, thus ensuring that no dimer helices were 
present. A gift of a chemically synthesized decanu- 
cleotide, d(T-A)6, from Dr. H. G. Khorana allowed us 
to  identify the d(T-A)s band in acrylamide gels and to  
calibrate the molecular weight measurements. 

The first melting curves measured for purified d(T- 
A)N oligomers showed the presence of two helical forms 
with different molar absorbancies. The more hypo- 
chromic form was found only at  low temperatures and 
underwent a transition to the normal form between 15 
and 35”, depending on N and M .  Molecular weight 
measurements as a function of temperature’s identified 
the low-temperature form as a dimer helix (which may 
aggregate to  form longer helices) and identified the 
normal form as an intramolecular hairpin helix. Con- 

(16) I .  R .  Lehman and A. L. Nussbaum, J. BWZ. Chem., 239, 
2628 (1964). 

(17) E. DeClercq, R .  D .  Wells, and T. V. Merigan, Nature, 226, 
364 (1970): E.  DeClercq, R. D .  Wells, R. C. Grant, and T. C. Meri- 
gan, ‘ J .  Mol. BWZ., 56, 83 (1971). 

(1968). 

Elson and T. Jovin, Anal. Bwchem., 27, 193 (1969). 

(18) I .  E .  Scheffler, E .  L. Elson, and R .  L. Baldwin, ibid., 36, 291 

(19) E. L. Elson, Ph.D. Thesis, Stanford University, 1966; E.  L. 

ditions were found in which the hairpin helices could 
be studied in the absence of dimers. 

Measurement of the Parameters Needed 
to Predict Hairpin Melting Curves 

The procedure used to  test the theory of DNA melt- 
ing with d(T-A), oligomers is reasonably straightfor- 
ward. Only two equilibrium constants are needed for 
a satisfactory analysis of the melting curves for open 
hairpin helices, formed by linear oligomers, and one of 
these, the stability constant s, can be measured inde- 
pendently of the oligomer melting curves. To describe 
nucleation, only y-the equilibrium constant for the 
minimum-size hairpin loop-is needed for a first analy- 
sis, since the minimum-size loop predominates during 
melting.6 Because AHonuol appears to  be small, y 
is assumed to be independent of temperature. A sta- 
tistical weight is assigned to each hairpin species (Figure 
2) which, if the theory is valid, equals the equilibrium 
constant for the formation of this species from tjhe un- 
paired chain. Neglecting electrostatic effects, the 
statistical weight of a partly helical molecule with one 
minimum-size loop and k base pairs is ysk-‘, and the 
statistical weight of the unpaired chain is 1. Before 
the statistical weights of all species are summed on a 
computer to give a predicted melting curve,6 the weight 
of each species is multiplied by its average molar ab- 
sorbance per pair of T and A residues. 

Studies on poly [d(A-T) ] have shown that the helix 
hypochromicity (the relative change in absorbance on 
forming the helix from the unpaired chain) is reason- 
ably independent both of temperature ( T )  and mono- 
valent counterion concentration ( M ) .  When this is 
assumed to  be true also for oligomers, two problems re- 
main. One is to  know how the hypochromicity of a 
helical base pair depends on helix length.20 I n  our work 
Applequist’s approximationz1 was used (eq 2) , according 

to which the hypochromicity varies with helix length 
as the ratio of stacking interactions (k - 1) to total base 
pairs ( k ) .  

The second problem was to find g, the number of 
bases In the minimum-size loop, since the hypochromi- 
city of a hairpin helix is a weighted average of contribu- 
tions from bases in the loop and in the helix. Because 
g can have only the even values 2, 4, 6.  . . (there must 
be equal numbers of A’s and T’s in the loop), we com- 
pared the experimental plot of helix hypochromicity 
us. N with predicted curves for g = 2, 4, 6 , .  ..6 The 
value of g = 4, which gave good agreement, is reason- 
able according to  models of the loop built with space- 
filling models; however, it must be considered tentative 
because of the assumptions involved in finding g in 
this way. 

The stability constant s, as defined in the statistical 

(20) II. K .  DeVoe and I. Tinoco, Jr., J .  M o l .  BWZ., 4, 518 (1962). 
(21) J. Applequist in “Conformations of Biopolymers,” G .  N. 

Ramachandran, Ed., Academic Press, New York, N. Y . ,  1967, p 403. 
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Figure 2. Diagrams of haiipin helix formation by linear and cir- 
cular oligomers with a T-A-T-A. , .base sequence. Only the 
minimium-size hairpin loop is shown. If the loop is central, the 
linear oligomer can form a complete hairpin helix; if the loop 
is off-center, part of the chain remains nonhonded and forms a 
dangling end terminated either by a 5'-P or a 3'-OH group. The 
entire reaction pathway shown for the linear oligomer may be 
considered as a loop migration reaction; many such reactions are 
possible. For the circular oligomer, which forms a closed hairpin 
helix with two end loops, the complete helix has the same geo- 
metry regardless of where the first loop is formed, except as the 
base sequence in the end loops reads A-T-A-T or T-A-T-A. 
The  equilibrium constants for base-pair formation in the closed 
helix are complex, since they depend on the sizes of the two loops. 
The  simple scheme of equilibrium constants shown for the open 
helix has been found to be valid only in special circumstances 
(at  high counterion concentrations).22 

theory of DXA melting, is required to have certain 
properties. One requirement is that, for a homoge- 
neous DKA, s should be independent of helix length and 
not be dependent on oligomer size. Our results showed 
that the contrary is true in many conditions.22 There- 
fore we begin here by describing the apparent stability 
constant, sapp ,  It is the equilibrium constant for the 
formation of a stacked base pair in an infinite DKL4 he- 
lix, and it is obtained from measurements made on 
poly[d(A-T)]. The T, of poly[d(h-T)] (or T,") is 
assumed not to  be influenced by nucleation processes, 
so that sapp = 1 at T,". According to  a theoretical 
study by H i j ~ m a n s , ~ ~  s does equal 1 a t  T," for poly- 
[d(A-T)] despite the effects of branching preceding 
melting. The temperature dependence of sapp is given 
by eq 3, and, since saPP = 1 at T,", eq 4 follows. 

-RT In sapp = AG" = AH" - TAS" ( 3 )  

T," = AH'/AS" (4 ) 

Calorimetric measurements by Scheffler and Sturte- 
vantZ4 of the poly[d(A-T)] melting curve gave AH" = 
-7.9 kcaljmole base pairs at M = 0.01 and showed 
that AH" is reasonably independent of temperature, 
i e . ,  that AC, is small compared to AH". JVe have as- 
sumed that both AS" and AH" are independent of 
temperature. Therefore eq 3 and 4, together with 
measurements of AH" and TmW, are sufficient to  give 

(22)  E. L. Elson, I. E. Scheffler, and R. L. Baldwin, J .  Mo2. B i d . ,  
54, 401 (1970). 

(23) J. Hijsmans, J .  Chem. Phys., 47, 5116 (1967). 
(24) I .  E. Scheffler and J. 31. Sturtevant, J .  M o l .  Biol., 42, 577 

s a p p  as a function of temperature a t  M = 0.01. 
Since s a p p  depends strongly on the counterion con- 

centration, either AH" or AS", or both, must vary 
xith M. The dependence of sapp on results from a 
difference in electrostatic free energy, AGoel, per stacked 
base pair, between the helix and the unpaired chain(s). 
If we divide AGO into a "chemical" and an electro- 
static part 

AGO = AG"ch f AGoel = 

AHoch  - TAS"ch f AGoei  (5) 
then, since AGO = 0 at T,"(M), we have 

T,"(~lf) = (AGoel + AH"ch)/ASoch (6) 
Both experiments and some theories26 26 indicate that 
a suitable approximate relation between AGoel and XI 
for values of 111 less than LTIh1, is 

AG"e1 = AGoel(Mhl) + B log (f%f/A?fhl) ( X  5 -%!hl) 

where AGoel( l l lhl)  is quite small compared to AGOel a t  
 lo^ values of JI. Thus the relation between T," and 
114, when AH",h and A S o , h  are taken to be constants, is 
given by eq 8. The value of k!hl, a t  which T," reaches 

a plateau, has been found to be about 0.6 for poly- 
[d(h-T)]27 and hfhl = 1-2 for natural D N A s . ~ ~ , ~ ~  
Typical values of dT,/d log M for natural DNAs are 
about 18") and a value of 22" has been reported for 
p ~ l y [ d ( A - T ) ] . ~ ~  When a detailed analysis has been 
made, the variation of AHo and As" with ,If may well 
prove to be complex. This problem has been discussed 
by Recordz6 for the case of natural DNAs. He con- 
cludes that, to a first approximation, AS" is independent 
of ilf and AH" varies with T, according to eq 4. We 
have used this assumption in analyzing our results, but 
probably the conclusions would not be very different 
if instead AH" were treated as independent of M .  

Agreement with Theory at a High 
Counterion Concentration 

To measure y it is necessary, in principle, t o  use only 
the breadth or the T, of one oligomer melting curve 
when the other parameters described above have been 
measured. I n  practice, y is found by comparing the 
entire experimental curve of T,(N) as a function of N 
(or 1/(N - 2 ) )  with curves predicted for different 
values of y. The first test of the theory is then whether 
one value of y will reproduce the T,'s of all oligomers. 
At il/l = 0.5, y = 0.003 i 0.001 was found to  do this 
satisfactorily.6 The second test of the theory is t o  use 
this value of y to  predict the breadths and shapes of the 
different oligomer melting curves. Again at M = 0.5 
the agreement was satisfactory with y = 0.003. 

(25) C. Schildkraut and S. Lifson, Biopolymers,  3, 195 (1965). 
(26) M. T. Record, Jr . ,  ibid., 5, 975 (1967). 
(27) R. B.  Inman and R. L. Baldwin, J .  Mol. Biol., 8, 452 (1964). (1969). 
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Figure 3. For the linear oligomers d(T-A)N, this graph shows 
the dependence of the melting temperature T,(Ar) of the hairpin 
helix on S and on the monovalent counterion concentration, 

These results showed tha t  the usual approximation S ~ P P  = 
constant, independent of helix length or oligomer size, would 
have to be modified for DNA oligomers (reprinted with permission 
from the Journal of Molecular Biology). 

Dependence of s a p p  on Oligomer Size for M < Mh, 
At M = 0.06 and 0.01 it was not possible to reproduce 

both the breadth and the T,, of even one oligomer melt- 
ing curve with one value of y,22 using the procedures 
and assumptions which were successful a t  M = 0.5. 
The reason for this behavior turned out to be very inter- 
esting and, in hindsight, not surprising. It is best ex- 
plained by the data in Figure 3, which show T,(N) 
us. log M for several oligomers. It is apparent that 
dT,/d log M depends on oligomer size. Since dT,/d 
log &I is a straightforward function of AGoel for the 
infinite helix, the simplest explanation of these data is 
that AGoel depends on helix length and on oligomer size. 
In  turn sapp would be a function of oligomer size, and 
this would explain why the procedure used successfully 
to  fit the oligomer melting curves at M = 0.5 (where 
AGoel is small) fails a t  M = 0.06 and 0.01. 

To study this problem further, AGool was computedzz 
by the method of Schildliraut and LifsonlZb who had 
shonn that T,“ for the DNA helix is expected to  be a 
linear function of log M at  low and moderate M .  Pair- 
wise interactions between charges on opposite strands 
of the helix are summed numerically, and the unknown 
parameters can be included in one adjustable parame- 
terZ6 which may be found from dT,”/d log M. The de- 
pendence of AGOe, on helix length predicted in this way 

was found to  agree surprisingly well with the experi- 
mental values. The calculations also indicated that 
charge interactions involving unpaired chain segments 
cannot be neglected. At M = 0.5, the computed val- 
ues of AGoel were quite small. 

These calculations show the nature of the problem 
but they leave open the question of how to compute 
equilibria between different, partly helical, species a t  
low M .  A priori  calculations of these electrostatic ef- 
fects are semiquantitative at  best. In  the statistical 
theory of DNA melting, sapp  has been taken to  be inde- 
pendent of oligomer size and helix length. This as- 
sumption, which we find is satisfactory only for M 2 
M h , ,  may be regarded as a zero-order approximation, 
valid only when AGoel is quite small. A reasonable 
first-order approximation for M < Mhi is to  allow sspp 

to be a function of oligomer size but to require that it be 
independent of conformation, not dependent on the 
fraction helix or on the disposition of unpaired chain 
segments. This approximation was used22 to  predict 
oligomer melting curves at  M = 0.01 and 0.06 with 
reasonable success. To use the approximation, only 
one new parameter is needed: the experimental T ,  
of the oligomer. The nucleation constant y is taken to  
be independent of both oligomer size and conformation, 
although y is allowed to  vary with M .  The approxi- 
mation allows rapid calculation of the equilibria and 
reproduces quite well the breadths and shapes of the 
oligomer melting curves, but further work is needed to 
define the limits of its validity. 

Helix Formation by “Minicircles” and 
the Hairpin Loop-Weighting Function 

The discovery by Olivera, Scheffler, and Lehman28 
that the DNA-joining enzyme closes d(T-A), oligomers 
into single-strand circles for N 2 16 made it possible to  
study loops of different sizes. These “minicircles” 
form closed hairpin helices with a loop a t  each end 
(Figure 2) and they can melt only by enlarging loops. 
I n  predicting melting curves for circular oligomers, we 
began by using the Jacobson-Stockmayer l ~ f , ~  which 
is valid for long chains whose end-to-end conformations 
obey a gaussian distribution. I n  eq 9 J is a constant 

p(x)  = J/x8” (9) 
dependent on chain stiffness. The melting curves for 
d(A-T)c minicircles a t  M = 0.5‘j showed that something 
was wrong: the predicted melting curves gave T,’s 
lower than the T m  of poly[d(A-T)] and the experimental 
T,’s were 4-5” higher for c = 20 and 31 (Figure 4). 
No new parameters were involved because the constant 
J in eq 9 cancels from the expression for statistical 
weights. Some unexpected feature of the actual lwf for 
DNA loops evidently was being expressed. Two possi- 
bilities were explored: (a) the exponent of 3//z might 
be too low, since other studies of polymer chains have 
suggested an exponent near 1.7SZg or even 2;30 (b) it 

(28) B. M .  Olivera, I. E. Soheffler, and I. R. Lehman, J .  Mol. Biol., 

(29) M. E. Fisher, J. Chem. Phys., 45, 1469 (1969). 
36, 291 (1968). 
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Figure 4. Melting curves of the closed hairpin helices formed by 
two circular oligomers, relative to the melting curve of poly- 
[d(A-T)] .6 These results showed tha t  the loop-weighting func- 
tion which had been used in the theory of DNA melting would 
have t o  be modified for small loops, since i t  predicts tha t  helices 
formed by  circular oligomers should be slightly less stable than 
poly[d(A-T)] (reprinted with permission from the Journal of 
Molecular Biology). 

might be necessary to  modify the lwf for small 
since the Jacobson-Stockmayer lwf is a limiting expres- 
sion, valid for long chains. 

The predicted melting curves proved to be insensitive 
to  the choice of exponent between and 2 ,  but sensi- 
tive to the form of the lwf used for small loops and espe- 
cially to the value for P h ( 5 ) ,  the lwf for the minimum-size 
loop. According to Flory and Semlyen3' one may ex- 
pect that P h ( 2 )  for small hairpin loops will be of the form 

when the distribution of chain conformations is gaussian 
and in the absence of special orientation effects. The 
quantity C, is Flory's "characteristic ratio" which is 
always less than C,; C,/C, asymptotically approaches 
1 for large 2. If C, is large (compared to l), one can 
expect a large drop in C,/C, a t  small 2 .  The constant 
J also depends on C,, which is a measure of the chain 
stiffness. For the unstacked poly(rU) chain, Inners and 
F e l ~ e n f e l d ~ ~  have found C, = 18; this is similar to their 
values for unstacked poly (rA) and depurinated DNA. 
We tried different empirical representations of C,/C, 
in predicting the minicircle melting curves;6 each ap- 
proximation tried had only one new parameter. The 
one which was most successful in predicting the mini- 
circle melting curves was C,/C, = 1 - ( K l x ) ,  but all 
three representations that were tried indicated that 
p h ( 5 )  was about 15 times larger than predicted by the 
Jacobson-Stockmayer lwf. Consequently there is a 
simple explanation for why helices formed by minicir- 
cles have unexpectedly high 7"'s: small loops are 
more stable relative to  large ones than predicted by the 
Jacobson-Stockmayer lwf. 

(30) F. T. Wall, L. A. Hiller, Jr., and W. E. Atchison, J .  Chem. 
Phys., 29, 2314 (1955). 

(31) P. J. Flory and J. A.  Semlyen, J .  Amer. Chem. Soc., 88,  3209 
(1966). 

(32) L. D.  Inners and G. Felsenfeld, J. Mol. B id . ,  SO, 373 (1970). 

Evaluation of the Stacking Interaction 
For the purpose of defining the stacking interaction, 

suppose that a stacked base pair is formed in two steps 
(see Figure 1 ) .  In  the first step an isolated base pair is 
formed with an equilibrium constant y(2). In  the 
second step this isolated base pair is added on to the helix 
with an equilibrium constant 7 0 .  The overall equilib- 
rium constant is s = y ( 2 ) 7 0 .  From the results with 
d(T-A) hairpin helices Yh(5)  = 0.003, and therefore 
y(2) = O . O 0 3 ~ ( 2 ) / p h ( 5 ) .  Since the effective concen- 
tration p ( 2 )  is probably at least as large as P h ( j ) ,  it is 
probable that TO < s/0.003. At d l  = 0.5 s varies from 
1 a t  T m "  to about 8 at 20"; thus T O  < 2 x lo3 a t  room 
temperature. 

A defined stacking interaction T is a basic parameter 
in Zimm's 1960 theory.* It was evaluated by Crothers 
and Zimm33 from the widths of the melting curves of 
some DNA homopolymer pairsz7 and was found to be 
103-104. In  order to make T a measurable quantity, 
Zimm2 gave a defined value to y ( 2 )  based on the Jacob- 
son-Stockmayer expression for p(2) .  The estimate of 
T = 103-104 is quite consistent34 with T~ < 2 X lo3 
since the Jacobson-Stockmayer expression underesti- 
mates p h ( 5 )  by a factor of 15 and since this behavior is 
now expected for small D S A  loops, in the absence of 
special orientation effects. 

Prediction of y and K 

Since y depends only on K and on p h ( 5 )  (eq 11) it is 

y = Y h ( 5 )  = KPh(5) (11) 

possible to  predict y from a measurement of K (this 
requires study of dimer helices) and from an analysis of 
the chain conformation of unpaired d(T-A) chains. 
Considerable progress has been made in understanding 
polynucleotide chain conformation, both from experi- 

and from theoretical and it is possible 
to compute p h ( j )  for the different models of chain con- 
formation under current consideration. A value for K 

has not yet been measured for the d(T-A), oligomers. 
However, if the assumptions discussed below are correct, 
similar values of K will be found for the different RNA 
and DNA double helices, and a value of K = 22 A3/ 
molecule can be computed from data given by Apple- 
quist and Damle' for the rA.rA helix. 

Let the loop closure reaction be divided into two 
partial  reaction^:^ (a) bringing the two complementary 
bases together within a volume element Sv needed for 
H-bond formation and (b) base pair formation (eq 12) .  

A G O n u c l  = AG'loop + A G o b r ,  (12) 

Bringing the bases together is assumed to be purely an 
entropic reaction, so that AHoloop = 0. Also A X o b p  is 

(33) D. M. Crothers and B. H. Zimm, ibid., 9, 1 (1964). 
(34) More specifically, one can compute the product KJ (see eq 10 

and 11) from both T and y ;  the same value of KJ is found, within 
experimental error, from KJ = 2'/2sr-1 and from ~ h ( 5 )  = 0.003, with 
CJC, = 0.15 for 5 = 5 in eq 10. 

(35) W. Olson, Ph.D. Thesis (with P. J. Flory), Stanford Uni- 
versity, 1970; C. DeLisi and D. M. Crothers, Biopolymers, in press. 
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assumed to be small and is neglected. Then 

AGOnuo, = -RT In y = AHobp - TASoloop (13) 

with 

AS01,,, = R In p h ( 5 )  6v (14) 

Next, consider the case in which AHOb, = 0. (Since 
H bonds between the bases and water are broken to 
form a base pair, AHOb, should be small.) Then 

= Ph(5)6v (15) 

K = 6V (16) 

and therefore (compare eq 11 and 15) 

These assumptions lead to an interpretation of K as the 
volume element of contact between two bases needed 
for base-pair formation. If they are correct, as a first 
approximation, then the radius r of 6v should be com- 
parable to  the H-bond length (2.5 8). For the rA. 
rA helix r = 1.7 8 if 6v = K = 22 ik3/molecule. This 
is reasonable agreement (within one order of magnitude 
for 6v). 

For the four Inners-Felsenfeld models of the poly- 
ribonucleotide chain, Ph(5) varies between 1.7 X 
and 2.4 X m0lecule/8~ if special orientation ef- 
fects are neglected (E. L. Elson, private communication, 
1970). The corresponding values of r ,  computed from 
eq 15 with y = 0.003 and 6v = (4/3)rr3, are 3.45- 
3.06 A. For a free rotation model, Ph(5) = 9.6 X 
10-6 m0lecule/8~ and r = 1.96 8. The agreement 
with the H-bond length is as close as can be expected. 
We conclude that, on the one hand, the assumptions 
listed above are plausible and that, on the other hand, 
this comparison is not very sensitive to  the particular 
model used for the polynucleotide chain. 

However the comparison of y with a value predicted 
from Ph(5) is sensitive to the value assigned to AHOb,.  

If A H O b ,  is given a definite value of only -2 kcal, 
then ASoloop is changed from -11.5 eu for AHOb, = 0 
to -15.2 eu for A H o b p  = - 2  kcal (see eq 13). If 
p h ( 5 )  = 2 X molecule/i3, r is then only 1.1 8 
(see eq 13 and 14). Consequently it is likely that 
AHOb,  is small and that y is reasonably independent of 
temperature (compare the discussion by Eigen and 
Porschkes). 

Other Conclusions about Equilibria 
in Hairpin Helices 

Does a hairpin helix melt from the open end or by 
enlarging the hairpin loop? A study of this question,6 
based on the results obtained with circular oligomers, 
shows that the hairpin melts chiefly from its open end 
and that the minimum loop is the predominant loop 
size throughout melting. 

What factors control the transition from monomolec- 
ular hairpin helices to  dimer helices? Obviously higher 
concentrations will favor dimers and aggregates of 
dimers. The finding that dimer helices always undergo 
a transition to  hairpins on raising the temperature was 
unexpected, but is easily understood. l8 The statistical 

weights, or concentrations relative to  the nonbonded 
chain, of hairpin and dimer helices are 

K - c N  - - - COsN- l  (18) 
co 2 

where g is the number of unpaired bases in the mini- 
mum hairpin loop. The hairpin is more stable than 
the dimer at  high temperatures because it is formed 
intramolecularly and s becomes small a t  high tem- 
peratures; a t  T,”, s = 1 and the ratio of hairpin to 
dimer is about lo6 if y = K = M-I, and 

Kinetic Behavior of Hairpin Helices 
In  principle, the rate constants for opening and clos- 

ng a T . A  base pair can be found by analyzing the 
kinetics of melting of hairpin helices of different sizes.36 
Since a complete understanding of the equilibrium con- 
stants is required for such an analysis, it  seems best to  
analyze first the kinetic results for M 2 0.5, where one 
can hope to bypass an explicit consideration of electro- 
static effects. Unfortunately the d(T-A), hairpin 
helices melt so rapidly at  M = 0.5 that most of the 
reaction is complete3’ within the dead time of our 
temperature-jump i n s t r ~ m e n t ~ ~  (a few microseconds), 
and it appears that  a different method will be required 
to  complete the study. 

Analysis of the results is a complex problem for these 
hairpin helices because a large number of species, inter- 
mediates between the complete helix and the unpaired 
chain (see Figure 2), contribute significantly to the 
signal. The dimer helices studied by Eigen and Pors- 
~ h k e ~ ~  have been analyzed by a simple steady-state 
equation, because only two physical species--the 
complete helix and the unpaired chains-contribute 
significantly to  the signal, to  a first approximation. 
For the d(T-A)N hairpins, it is necessary to  take account 
of partly melted helices by making a complete analysis 
of the eigenvectors and eigenvalues of the rate coef- 
ficient matrix. 

Recently E. L. Elson (private communication, 1970) 
has obtained an analytical solution to  the problem for 
the simplest case, in which there are only four rate 
constants: forward and backward rate constants for 
helix nucleation and propagation. With his solution 
it is possible to  generate predicted kinetic melting 
curves with reasonable demands on computer time, 
even for large oligomers, and to  compare these with 
the measured ones. An important feature of these 

(dimer, N = 2n + g base pairs) 

c0 = 10-5 M .  

(36) D. M. Porschke, Ph.D. Thesis, Gottingen University, 1968; 
M. Eigen in “Fast Reactions and Primary Processes in Chemical 
Kinetics,” S. Claesson, Ed., Interscience, New York, N. Y., 1967, 
p 358. 

(37) T .  Y. Tsong, unpublished; I. E. Scheffler, Ph.D. Thesis, 
Stanford University, 1968. 

(38) M. Eigen and L. C. deMaeyer in “Techniques of Organic 
Chemistry,” S. L. Freiss, E. S. Lewis, and A. Weissberger, Ed., 
Vol. 8, Part 11, Interscience, New York, N. Y., 1963. 
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predicted curves is that they depend almost entirely 
on the rate of helix propagation for the longer oligo- 
mers, when the temperature jumps are limited to  the 

Of helix nucleation. We expect that it will be possible 
to use this approach to measure the rate for 
Propagation and eventually to  work out the kirletics of 
a defined loop migration reaction (see Figure 2). 

The studies of oligomers which are descrzbed here have been a 
collaborative effort between Drs. E. L. Elson, I .  E .  Schefler, and 
myself, and the work is being carried forward by D r .  Elson at Cor- 
nell. I n  writing this summary I have made use of his current 

benefitted conszderably f rom discusszons with other scientists, in 
partzcular: Drs. B.  H .  Zimm, J .  A .  Schellman, D .  M .  Crothers, 
P.  J .  Flory, and M. T .  Record, J r .  I also thank Barry Nall  for 
his comments on this Account. 

‘One> and are insensitive to the rate analyses and unpublzshed work. Whi le  dozng this research, we 
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I n  1966’ we presented an approach to determine the 
forbiddenness or allowedness of organic reactions which 
is a suitable alternative to the thoroughly documented 
methods of Woodward and Hoffmanm2 The present 
Account summarizes the original approach and appli- 
cations presented in various subsequent publications 
and describes some further examples of interest. These 
include application of the concept not only to predic- 
tion of allowedness of reactions but also to description 
of some ground-state organic systems. 

The Concept 

One concept which has been of special value in 
organic chemistry is the Hucliel rule3 which says that, 
for ground-state molecules with a cyclic array of orbi- 
tals, 4N + 2 electrons lead to aromaticity and special 
stability deriving from the presence of a closed shell. 
Systems which have 4N electrons are said to  be anti- 
aromatic.4 This rule holds not only for cyclic polyenes 
but also for cyclic transition states. 

However, the 4N + 2 rule can be shown to apply 
only to cyclic systems composed of orbital arrays in 
which there are zero or an even number of sign inver- 
sions resulting from plus-minus overlaps. Ordinary 
cyclic polyenes and other cyclic ir systems such as 
cyclopropenyl, cyclobutadiene, cyclopentadienyl, ben- 
zene, cycloheptadienyl, etc., fit this requirement. 
These are conveniently termed Hucltel systems since 

(1) (a) H.  E. Zimmerman, J .  Amer. Chem. SOC., 88, 1564 (1966): 
(b) ibid. ,  88, 1566 (1966); (c) Science, 153,837 (1966). 

(2) (a) R .  B. Woodward and R. Hoffmann, J. Amer. Chem. SOC., 
87,395 (1965); (b) ibid., 87,2511 (1965); (c)  R. Hoffmann and R. B. 
Woodward, ib id . ,  87, 2046 (1965); (d) ibid. ,  87, 4389 (1965); (e) 
R. B. Woodward and R. Hoffmann, Accounts Chem. Res., 1 ,  17 (1968); 
(f)  Angew. Chem., Int. Ed. Engl., 8,  781 (1969). 

(3) E. Huckel, 2. Phys., 70, 204 (1931); 76, 628 (1932); 83, 632 
(1933). 

(4) R. Breslow, J. Brown, and J. J. Gajewski, J .  Amer. Chem. Soc., 
89, 4383 (1967). 

they fit the Huckel rule and have molecular orbital 
solutions of the normal Huckel type. 

However, many systems in organic chemistry consist 
of monocyclic arrays of orbitals in which there is one or, 
alternatively, an odd number (v ide  infra) of overlaps 
between adjacent orbitals of different sign. These 
molecules do not have a closed shell with 4N + 2 elec- 
trons but rather need 4N electrons for stability. With 
4N + 2 electrons they are antiaromatic.’ We have 
termed such molecular species Mobius because the 
molecular orbital situation is quite like that of Heil- 
bronner’s5 Mobius cyclic polyenes.’ 

Hence the first problem is to learn to recognize which 
orbital arrays are of the Huckel type and which are 
Mobius. Figure 1 depicts two unlikely but instructive 
arrays of arbitrarily chosen orbitals; l a  is a Huckel 
system while Ib is a Mobius one. Note that these 
arrays may consist of p orbitals, hydrogen 1s orbitals, 
carbon 2s orbitals, etc., and will roughly approximate 
situations where all are of the same type. 

I n  Figure 1 it should be clear that the orbitals shown 
are “basis set orbitals,” namely, the assortment of 
orbitals present prior to a molecular orbital calculation; 
such a set can be chosen with the orientations and 
assignment of sign selected for convenience. However 
the molecular orbital calculation results prove inde- 
pendent of the orientations selected. Any concern 
about adjacent plus-minus overlap as unfavorable is 
premature. Hence the categorization of a system as 
Huckel us. AIobius does not require an explicit AI0 cal- 
culation but is made from inspection of the basis orbitals 
available to the system. 

(5) (a) E. Heilbronner, Tetrahedron Lett., 1923 (1964). (b) This 
is equivalent to defining X as X = (a - E ) / @  = [E - a]/- p. (c) 
Note also that where parallel p orbitals with opposed signs are present, 
this counts as only one node although there are two sets of lobes: 
this is because a single node is the occurrence of two adjacent op- 
positely signed orbitals (not lobes) I Also, there is no node between 
lobes of a single p orbital. 


